Dysmorphology and genetic syndromes

Ayman W. El-Hattab, MD, FAAP, FACMG

Associate Professor (adj), College of Medicine, University of Sharjah

Consultant, Genetics and Metabolic, Genetics Clinics, KidsHeart Medical Center, Abu Dhabi, Dubai, and Al-Ain

Consulting Editor for GeneReviews
• Dysmorphology:
 – The study of structural defects (congenital malformations, birth defects) that affect the anatomy (morphology) of the individual.
• Minor anomalies are defined as unusual morphologic features that are of no serious medical or cosmetic consequence to the patient.

• The value of their recognition is that they may serve as indicators of altered morphogenesis in a general sense or may constitute valuable clues in the diagnosis of a specific pattern of malformation.

• These minor external anomalies are most common in areas of complex and variable features, such as the face, auricles, hands, and feet.
With one or more major malformations (%)

% of babies

Number of minor malformations per newborn

- 0 (85%)
- 1 (13.4%)
- 2 (0.8%)
- 3 or more (0.5%)

Mostly multiple major anomalies (90%)
- Epicanthus
- Up-slanted palpebral fissures
- Down-slanted palpebral fissures
- Hypertelorism
- Brushfeild spots
• Preauricular tag
• Preauricular pit
• Asymmetric ears
• Low-set ears
• Single palmar crease
• Clinodactyly
• Syndactyly
In addition, before ascribing significance to a given minor anomaly in a patient, it is important to note whether it is found in other family members. Almost any minor defect may occasionally be found as a usual feature in a particular family.
• A pit on the chin in a father and daughter
• Approach for evaluating individuals with birth defects:
 1. Information gathering
 2. Interpret the anomalies
 3. Attempting to arrive to a specific diagnosis
• Gathering information:
 – Family history
 – Prenatal history
 – Birth history
 – Growth parameters
 – Physical examination
 – Measurements (e.g. ear, hand,...)
• Interpret the anomalies:
 – Sequence: a single problem in morphogenesis that leads to a cascade of subsequent defects
• Four categories:
• Malformation sequence: a single localized poor formation of tissue that initiate a chain of subsequent defects (recurrent risk 1-5%).
• Deformation sequence: there is no problem in the fetus but mechanical forces such as uterine constrains result in altered morphogenesis e.g. oligohydraminos (recurrent risk is very low)
• Disruptive sequence: the normal fetus is subjected to a destructive problem (vascular, infectious, mechanical) and its consequences (e.g. amniotic band).

• Dysplasia sequence: the primary defect is a lack of normal organization of cells into tissues (e.g. skeletal dysplasia)
Malformation syndrome:

- Multiple structural defects that cannot be explained on basis of a single initiating defect and its consequences but rather appear to be the consequence of multiple defects in one or more tissues.

- Due to a single cause: chromosomal abnormalities, mutant gene, or teratogenes.
Malformation terminology

http://research.nhgri.nih.gov/morphology/index.cgi

Elements of Morphology: Human Malformation Terminology

An international group of clinicians working in the field of dysmorphology has initiated the standardization of terms used to describe human morphology. The goals are to standardize these terms and reach consensus regarding their definitions. In this way, we will increase the utility of descriptions of the human phenotype and facilitate reliable comparisons of findings among patients. Discussions with other workers in dysmorphology and related fields, such as developmental biology and molecular genetics, will become more precise. Here we describe the general background of the project and the various issues we have tried to take into account in defining the terms. Published 2009 Wiley-Liss, Inc.

This Web site contains six articles that describe the initial results of a project intended to develop accurate and clear definitions of terms for the craniofacies in general, the major components of the face, and the hands and feet [Allanson et al., [2009]; Biesecker et al., [2009]; Carey et al., [2009]; Hall et al., [2009]; Hennekam et al., [2009]; Hunter et al., [2009]]. These articles are the result of a significant amount of
Head and Face
• Brachycephaly: shortened anteroposterior dimension (length) of the head compared to width

• Dolichocephaly: increased anteroposterior length of the head compared to width
• Occiput, Flat: Reduced convexity of the occiput (posterior part of skull)

• Occiput, Prominent: Increased convexity of the occiput (posterior part of the skull)
• Plagiocephaly: Asymmetric head shape, which is usually a combination of unilateral occipital flattening with ipsilateral frontal prominence, leading to rhomboid cranial shape
• Face, Coarse: Absence of fine and sharp appearance of brows, nose, lips, mouth and chin, usually because of rounded and heavy features or thickened skin with or without thickening of subcutaneous and bony tissues
• Face, Broad: An apparent increase in the width of the face

• Face, Long: An apparent increase in the height (length) of the face

• Face, Narrow: An apparent reduction in the width of the upper and lower face
• Face, Round: Facial appearance is more circular than usual, as viewed from the front.

• Face, Square: Facial contours, as viewed from the front, show a broad upper face/cranium and lower face/mandible, creating a square appearance.

• Face, Triangular: Facial contour, as viewed from the front, triangular in shape, with breadth at the temples and tapering to a narrow chin.
• Forehead, Broad: Apparently increased distance between the two sides of the forehead

• Forehead, Narrow: Apparently narrow inter-temporal region
• Forehead, Prominent: Forward prominence of the entire forehead, due to protrusion of the frontal bone.

• Frontal Bossing: Bilateral bulging of the lateral frontal bone prominences with relative sparing of the midline
• Midface Prominence: Anterior positioning of the infraorbital and perialar regions, or increased convexity of the face
• Midface Retrusion: Posterior positioning and/or vertical shortening of the infraorbital and perialar regions, or increased concavity of the face
• Neck, Broad: Increased width of the neck when viewed from the front or back
• Neck Webbing: A paravertically oriented fold of skin on the posterolateral aspect of the neck
• Neck, Long: Increased distance from the point where neck and shoulders meet to the inferior margin of the occipital bone

• Neck, Short: Decreased distance from the point where neck and shoulders meet to the inferior margin of the occipital bone
• Nuchal Skin, Redundant: Excess skin around the neck, often lying in horizontal folds
• Palpebral Fissure, Down-slanted: The inclination of the palpebral fissure is less than typical for age

• Palpebral Fissure, Up-slanted: The inclination of the palpebral fissure is greater than typical for age
• Palpebral Fissure, Short: reduced length of the palpebral fissures

• Palpebral Fissure, Long: Apparently increased length of the palpebral fissures.
• Palpebral Fissure, Almond-Shaped: A shape created by an acute downward arching of the upper eyelid and upward arching of the lower eyelid, toward the medial canthus, which gives the outline of the palpebral fissures the configuration of an almond; thus, the maximum distance between the fissures is offset from, and medial to, the center point.
• Proptosis: An eye that is protruding anterior to the plane of the face to a greater extent than is typical

• Eye, Deeply Set: An eye that is more deeply recessed into the plane of the face than is typical
FACIAL MEASUREMENTS
• Telecanthus (Dystopia Canthorum): increased distance between the inner canthi
• Eyes, Widely Spaced (hypertelorism): The interpupillary distance appears to be increased

• Eyes, Closely Spaced (hypotelorism): The interpupillary distance appears to be decreased
• Epicanthus: A fold of skin starting above the medial aspect of the upper eyelid and arching downward to cover, pass in front of and lateral to the medial canthus
• Ptosis: The upper lid margin obscures at least part of the pupil

• Upper Eyelid fullness: Swelling or distention of the upper eyelid

• Synophrys: Meeting of the medial eyebrows in the midline
• **Microtia, First Degree:**
 Presence of all the normal ear components and the median longitudinal length more than 2 SD below the mean

• **Microtia, Second Degree:**
 Median longitudinal length of the ear more than 2 SD below the mean in the presence of some, but not all, parts of the normal ear

• **Microtia, Third Degree:**
 Presence of some auricular structures, but none of these structures conform to recognized ear components

• **Anotia:** Complete absence of any auricular structures
• Ear, Long: increased length of the ear
• **Ear, Protruding:** Angle formed by the plane of the ear and the mastoid bone greater than the 97th centile for age OR Outer edge of the helix more than 2 cm from the mastoid at the point of maximum distance.

• **Ear, Cupped:** Laterally protruding ear that lacks antihelical folding (including absence of inferior and superior crura).

• **Ear, Crumpled:** Distortion of the course of the normal folds of the ear and the appearance of supernumerary crura and folds.
• Ear, Low-Set: Upper insertion of the ear to the scalp below an imaginary horizontal passing through the inner canthi and extend that line posteriorly to the ear
• Ear, Posterior Angulation, Increased: increased angle formed by the perpendicular line and the medial longitudinal axis of the ear
• Pit, Auricular: Small indentation in the ear

• Pit, Preauricular: Small indentation anterior to the insertion of the ear
• Tag, Auricular: Small protrusion within the pinna

• Tag, Preauricular: Small non-cartilaginous protrusion anterior to the insertion of the ear
• Nose, Long: increased length from the nasal root to the nasal base

• Nose, Short: decreased length from the nasal root to the nasal tip
• Nasal Bridge, Depressed: Posterior positioning of the nasal root in relation to the overall facial profile for age.

• Nasal Bridge, Prominent: Anterior positioning of the nasal root in comparison to the usual positioning for age.
• Philtrum, Long: increased distance between nasal base and midline upper lip vermilion border.

• Philtrum, Short: decreased distance between nasal base and midline upper lip vermilion border.
• Philtrum, Smooth: Flat skin surface, with no ridge formation in the central region of the upper lip between the nasal base and upper vermilion border

• Philtrum, Deep: Accentuated, prominent philtral ridges giving rise to an exaggerated groove in the midline between the nasal base and upper vermilion border
• Upper Lip, Thick: increased height of the vermilion of the upper lip in the frontal view

• Lower Lip, Thick: increased height of the vermilion of the lower lip in the frontal view
• Upper Lip, Thin: reduced height of the vermilion of the upper lip in the frontal view

• Lower Lip, Thin: reduced height of the vermilion of the lower lip in the frontal view
- Upper Lip, Tented: Triangular appearance of the oral aperture with the apex in the midpoint of the upper vermilion and the lower vermilion forming the base

- Lip Pit: Depression located on the vermilion of the lower lip, usually paramedian
• Mouth, Wide (Macrostomia, Large Mouth): increased width of the oral aperture

• Mouth, Narrow (Microstomia, Small Mouth): decreased width of the oral aperture
• **Retrognathia:** Posteriorly positioned lower jaw, which is set back from the plane of the face when viewed from the side but not from the front.

• **Prognathism:** Anterior protrusion of the mandibular alveolar ridge beyond the vertical plane of the maxillary alveolar ridge, best appreciated in profile.
• Micrognathia: Apparently reduced length and width of the mandible when viewed from the front but not from the side
• Hands and feet
HAND MEASUREMENTS

MIDDLE FINGER LENGTH

MONTHS

AGE

YEARS
• Finger, Short (Brachydactyly): fingers that appear disproportionately short compared to the hand

• Fingers, Long (Arachnodactyly): fingers that appear disproportionately long compared to the hand
• Finger, Slender (Narrow, Arachnodactyly, Thin): Digits are disproportionately narrow (reduced girth) for the hand/foot size or build of the individual.

• Finger, Broad (Wide, Thick): Increased width of a non-thumb digit of the hand
• Finger, Absent: The absence of all phalanges of a digit of the hand and the associated soft tissues

• (Oligodactyly)
• Clinodactyly: A digit that is laterally curved in the plane of the palm
• Camptodactyly: The DIPJ and/or PIPJ of the fingers cannot be fully extended by either active or passive extension
• Fingers, Overlapping: A finger resting on the dorsal surface of an adjacent digit when the hand is at rest
• Fingers, Cutaneous Syndactyly of: A soft tissue continuity in the A/P axis between two fingers that lies significantly distal to the flexion crease that overlies the metacarpophalangeal joint of the adjacent fingers
• Hand, Preaxial Polydactyly of: Duplication of all or part of the first ray
• Hand, Postaxial Polydactyly of: Presence of a supernumerary digit that is not a thumb
• Hand, Polydactyly, Mesoaxial: The presence of a supernumerary finger (not a thumb) involving the third or fourth metacarpal with associated osseous syndactyly
Hand, Small: A normally proportioned hand (i.e., the various elements of the hand are in proportion to each other) that is overall small for age or overall body size.
• Hand, Clenched: All digits held completely flexed at the metacarpophalangeal and interphalangeal joints
• Hand, Split: Longitudinal deficiency of a digital ray of the hand except rays 1 or 5.

• (Cleft Hand, Ectrodactyly)
• Toe, Short (Brachydactyly): Digits that appear disproportionately short compared to the foot

• Toe, Long (Arachnodactyly): Digits that appear disproportionately long compared to the foot
• Toe, Slender (Narrow, Thin, Arachnodactyly): Digits are disproportionately narrow (reduced girth) for the hand/foot size or build of the individual

• Toe, Broad: increase in width of the non-hallux digit without an increase in the dorso-ventral dimension
• Toes, Cutaneous Syndactyly of: A soft tissue continuity in the A/P axis between two digits of the foot that does not meet the prior objective criteria
• Foot, Preaxial Polydactyly of: Duplication of all or part of the first ray
• Foot, Postaxial Polydactyly of: Presence of a supernumerary digit that is not a hallux
• Foot, Polydactyly, Mesoaxial: The presence of a supernumerary toe (not a hallux) involving the third or fourth metatarsal with associated osseous syndactyly
• Sandal Gap: A widely spaced gap between the first toe (the great toe) and the second toe
• Foot, Split: Longitudinal deficiency of a digital ray of the foot except rays 1 or 5
• (Ectrodactyly)
• Sole, Convex Contour of: The contour of the foot in lateral profile has a convex shape

• Heel, Prominent: Exaggerated or marked projection of the posterior pole of the heel

• Foot, Rocker Bottom: The presence of both a "prominent heel" and a "convex contour of the sole"
• Pes Planus: A foot where the arch is in contact with the ground or floor when the individual is standing

• Pes Cavus: The presence of an unusually high plantar arch
• Palmar Crease, Single Transverse: The distal and proximal transverse palmar creases are merged into a single transverse palmar crease
References:

• Smith’s recognizable patterns of human malformation

• http://research.nhgri.nih.gov/morphology/index.cgi
• Malformation syndromes
• Malformation syndromes
 – Multiple structural defects:
 • Dysmorphic facial feature
 • Growth abnormalities
 • Skeletal deformities (including hands and feet)
 • Skin and hair
 • Ophthalmological disorders
 • Internal organs: brain, cardiovascular, renal, gastrointestinal…
 • Hormonal disorders
• Malformation syndromes
 – Chromosomal disorders
 • Cytogenic chromosomal disorders
 • Microdeletion/microduplication syndromes
 – Single gene defects
 – Others: teratogens and unknown
• Malformation syndromes
 – Chromosomal disorders
 • Cytogenic chromosomal disorders:
 – Can be detected by karyotyping: aneuploidy or large deletions or duplications
 – The clinical consequences depend on the size of deleted/duplicated segment and the number and functions of genes included.
Trisomy 21 (Down syndrome)

• Craniofacial:
 – Flat facial profile, brachycephaly with flat occiput
 – Microcephaly
 – Upward slanting palpebral fissure with epicanthal folds
 – Open mouth with protruding tongue
 – Short nose with depressed nasal bridge
 – Small, low-set ear with overfolded helix
 – Short neck with excess skin at the back of the neck
• Hands and feet:
 – Brachydactyly
 – Hyopolasia of middle phalanx of 5th finger
 – Clinodactyly
 – Single palmar crease
• Sandal gap
• Planter crease between first and second toe
– Hypotonia
• Loose skin folds in posterior neck
• Eyes:
 – Brushfield spots (speckling of iris
 – Iris hypoplasia
 – Refractive errors (mostly myopia)
 – Lens opacities
 – Strabismus
 – Cataract, adults
 – Nystagmus
 – Blocked tear duct
 – Keratoconus
 – Cataract, congenital
• Neurocognitive: Hypotonia, Developmental delay, Seizures (10%)
• Growth: Microcephaly, Short stature, Increased weight in adolescence
• Musculoskeletal: Joint hyperflexibility, vertebral and rib anomalies, Hip anomalies (dysplasia, dislocation), atalantoaxial dislocation
• Eras: Hearing loss, Middle ear fluid
• Cardiac: Endocardial cushion defect, VSD, PDA, ASD, mitral valve, tricuspid, aortic regurgitation (adults)

• Endocrine and genital:
 – Micropenis and decreased testicular volume
 – Primary gonadal deficiency
 – Infertility
 – hypothyroidism

• GI anomalies: TEF, pyloric stenosis, duodenal atresia, imperforate anus
• Sporadic
• Chromosomal analysis (karyotype)
Trisomy 18 (Edwards syndrome)

• Craniofacial
 – Prominent occiput
 – Short palpebral fissures, ptosis, epicanthus, hypertelorism
 – Iris coloboma, corneal opacities, cataract
 – Microphthalmia
 – Narrow forehead
 – Low-set, malformed ears
 – Micrognathia, cleft lip/palate
 – Short neck
• Hands and feet:
 – Clenched hands, Overlapping fingers
 – Nail hypoplasia
 – Short hallux, dorsiflexed
 – Ulnar or radial deviation of hands
 – Hypoplastic or absent thumb
 – Single palmar crease
 – Rocker bottom feet
 – Syndactyly, polydactyly
 – Short fifth metacarpal
• Skeletal:
 – Limited hip abduction, Dislocated hip
 – Radial aplasia
 – Short sternum
 – Small pelvis
 – Broad chest with widely spaced nipple
 – Vertebral and rib anomalies
• Growth: microcephaly, growth deficiency
• Neurocognitive:
 – Developmental delay
 – Weak cry
 – Hypertonicity (after neonatal period)
 – Facial palsy
 – Hypomyelination
 – Microgyria
 – Cerebellar hypoplasia
 – Defects of corpus callosum
 – Hydrocephalus
 – Meningomyelocele
- Genital: Cryptorchidism, Hypospadias, Bifid scrotum, Hypoplasia of labia major with prominent clitoris, Bifid uterus, Ovarian hypoplasia
- Cardiovascular: VSD, ASD, PDA, Bicuspid aortic and pulmonic valves, Pulmonic stenosis, Aortic coarctation, Transposition of great vessels, TOF
- Renal: Horseshoe kidney, Ectopic kidney, Double ureter, Hydronephrosis, Polycystic kidney
- GI: Pyloric stenosis, Biliary atresia, Imperforate anus, TEF
• Sporadic
• Chromosomal analysis (karyotype)
Trisomy 13 (Patau syndrome)

- Craniofacial:
 - Sloping forehead
 - Wide sagittal suture and fontanels
 - Microphthalmia, hypotelorism, upslanting palpebral fissures
 - Absent eyebrows, underdeveloped supraorbital ridges
 - Iris coloboma, retinal dysplasia
 - Low-set malformed ears
 - Micrognathia, cleft lip and palate
• Skin:
 – Capillary hemangioma
 – Scalp defects
 – Loose skin, posterior neck
• Hands and feet:
 – Single palmar crease
 – Hyperconvex narrow finger nails
 – Camptodactyly, polydactyly, syndactyly
 – Posterior prominent heel
 – Ulnar deviation of hands
 – Radial aplasia
• Growth: Microcephaly, Growth deficiency
• Neurocognitive:
 – Holoprosencephaly
 – Seizures
 – Apneic spells
 – Severe developmental delay
 – Deafness
 – Hypotonia/hypertonia
 – Agenesis of corpus callosum
 – Hydrocephalus
 – Cerebellar hypoplasia
 – Meningomyeloceal
• Cardiac: VSD, PDA, ASD, Dextrocardia, Anomalous pulmonary venous return, Pulmonary stenosis, Hypoplastic aorta
• Skeletal: Rib anomalies, Pelvis anomalies
• Genital: Cryptorchidism, Abnormal scrotum (scrotalization of phallus), Bicornuate uterus, Hypospadias, Hypoplastic ovaries
• Renal: Polycystic kidney, Hydronephrosis, Horseshoe kidney, Duplicated ureters
• Sporadic
• Chromosomal analysis (karyotype)
Aneuploidy syndromes

- Trisomy 21
- Trisomy 13
- Trisomy 18
• Hypertelorism
• Epicanthus
• Highly arched eyebrows
• Prominent glabella
• Supraorbital ridge continuous with nasal bridge (Greek warrior helmet appearance)
• Short philtrum
• Micrognathia
• Simple ears
• High forehead
• Downturned mouth
Wolf-Hirschhorn syndrome (4p deletion)

• Partial deletion of the short arm of chromosome 4.

• Clinical manifestations:
 – Growth deficiency
 – Hypotonia
 – Developmental delay and intellectual disability
 – Seizures
 – Hearing loss
 – Skeletal anomalies
 – Congenital heart defects
 – Urinary tract malformations
 – Structural brain abnormalities.
- Round face
- Hypertelorism
- Epicanthus
- Downslanting palpebral fissures
- Low-set poorly formed ears
- Facial asymmetry
Cri du chat syndrome (5p deletion)

- Partial deletion of the short arm of chromosome 5
- Clinical manifestations:
 - Growth failure, microcephaly
 - Developmental delay
 - Cat-like cry
 - Hypotonia
 - Strabismus, myopia, optic atrophy
 - Congenital heart defects
 - Cleft lip/palate
 - Short neck, scoliosis, hemi-vertebra, flat feet, clinodactyly
 - Inguinal hernia
 - Cryptorchidism
• **Malformation syndromes**

 – Chromosomal disorders

 • Cytogenic chromosomal disorders
 • Microdeletion/microduplication syndromes (contiguous gene syndromes)

 – Result from deletions/duplications that encompasses several adjacent genes on a segment of the genome.

 – These rearrangement are typically small and can not be detected by regular karyotyping
• Comparative genome hybridization (array CGH, chromosomal microarray, CMA):
 • Deletions and duplications of segments too small (less than 1 to 2 Mb) to be seen in routine chromosomal analysis (karyotyping).
• The vast majority of genomic disorders result from submicroscopic chromosomal rearrangement limiting their detection by routine cytogenetics analysis.

• The use of microarrays has resulted in the discovery of many of those chromosomal rearrangements.
• Broad brow
• Bitemporal narrowness
• Periorbital fullness
• Epicanthal folds
• A stellate/lacy iris pattern
• Strabismus
• Short nose with full nasal tip
• Full cheeks
• Small widely spaced teeth
• Malar hypoplasia
• Long philtrum
• Full lips
• Wide mouth
• Malocclusion
• Small jaw
• Prominent earlobes
• Long face.
Williams syndrome

- Cardiovascular disease: supravalvular aortic stenosis, peripheral pulmonary stenosis, hypertension
- Connective tissue abnormalities: hoarse voice, inguinal/umbilical hernia, bowel/bladder diverticulae, rectal prolapse, joint limitation or laxity, and soft lax skin
- Intellectual disability
- Unique personality characteristics: overfriendliness, empathy, generalized anxiety, and attention deficit disorder
- Growth failure
- Endocrine abnormalities: hypercalcemia, hypercalciuria, hypothyroidism
• Williams syndrome is caused by contiguous gene deletion of the Williams-Beuren syndrome critical region (WBSCR) that encompasses the elastin gene \((ELN)\) at chromosome 7q11.23 (17 genes)
• Long narrow face
• Squared nasal root
• Hypertelorism
• Short palpebral fissures
• Smooth philtrum
• Cleft lip and palate
• Asymmetric fancies
• Craniosynostosis
• Ptosis
• Epicanthal folds
• Overfolded, squared off helices, cupped, microtic, and protuberant ears
• Preauricular pits or tags
22q11.2 deletion syndrome (DiGeorge Syndrome, Velocardiofacial Syndrome)

- Conotruncal malformations: tetralogy of Fallot, interrupted aortic arch, ventricular septal defect, and truncus arteriosus
- Palatal abnormalities: velopharyngeal incompetence, bifid uvula, cleft palate
- Developmental delay, autism, psychiatric illness, attention deficit disorder, anxiety
- Hypocalcemia
- Feeding difficulties, constipation, gastrointestinal anomalies (intestinal malrotation, imperforate anus, Hirschsprung disease)
- Renal anomalies
- Hearing loss
- Growth hormone deficiency
- Immune deficiency, autoimmune disorders,
- Seizures, tethered cord
- Skeletal abnormalities (scoliosis, clubbed feet, polydactyly, and craniosynostosis)
- Ophthalmologic abnormalities (strabismus, tortuous retinal vessels)
• The syndrome most often results from a 3 Mb deletion on the chromosomal region 22q11.2 that is flanked by LCRs A-D
• **Malformation syndromes**
 – Chromosomal disorders
 • Cytogenic chromosomal disorders
 • Microdeletion/microduplication syndromes
 – Single gene defects
• Sequencing:
 – Single gene sequencing
 – Gene panel for diseases (or disease groups)
 – Whole exome sequencing
• Deeply set, widely spaced, downslanted eyes
• Malar flattening
• Depressed nasal bridge
• Small mouth with retrognathia.
• Brachydactyly and scars from polydactly excision
• Dental crowding and high palate
• Retinal dystrophy
• Obesity
• Bardet-Biedl syndrome (BBS)
 – Characterized by rod-cone dystrophy, truncal obesity, postaxial polydactyly, cognitive impairment, male hypogonadotropin hypogonadism, complex female genitourinary malformations, and renal abnormalities.
 – Birth weight is usually normal, but significant weight gain begins within the first year and becomes a lifelong issue for most individuals.
 – Autosomal recessive disease. At least 19 genes are associated with BBS:
<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus Name</th>
<th>% of BBS Attributed to Pathogenic Variants in This Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS1</td>
<td>BBS1</td>
<td>~23.2%</td>
</tr>
<tr>
<td>BBS10</td>
<td>BBS10</td>
<td>~20%</td>
</tr>
<tr>
<td>BBS2</td>
<td>BBS2</td>
<td>~8.1%</td>
</tr>
<tr>
<td>BBS9</td>
<td>BBS9</td>
<td>~6.0%</td>
</tr>
<tr>
<td>MKKS</td>
<td>BBS6</td>
<td>~5.8%</td>
</tr>
<tr>
<td>BBS12</td>
<td>BBS12</td>
<td>~5%</td>
</tr>
<tr>
<td>MKS1</td>
<td>BBS13</td>
<td>~4.5%</td>
</tr>
<tr>
<td>BBS4</td>
<td>BBS4</td>
<td>2.3%</td>
</tr>
<tr>
<td>BBS7</td>
<td>BBS7</td>
<td>~1.5%</td>
</tr>
<tr>
<td>TTC8</td>
<td>BBS8</td>
<td>~1.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL6</td>
<td>BBS3</td>
</tr>
<tr>
<td>BBIP1</td>
<td>BBS18</td>
</tr>
<tr>
<td>BBS5</td>
<td>BBS5</td>
</tr>
<tr>
<td>CEP290</td>
<td>BBS14</td>
</tr>
<tr>
<td>IFT27</td>
<td>BBS19</td>
</tr>
<tr>
<td>LZTFL1</td>
<td>BBS17</td>
</tr>
<tr>
<td>SDCCAG8</td>
<td>BBS16</td>
</tr>
<tr>
<td>TRIM32</td>
<td>BBS11</td>
</tr>
<tr>
<td>WDPCP</td>
<td>BBS15</td>
</tr>
</tbody>
</table>
• Prominent forehead (dolichocephalic)
• High anterior hairline
• Sparse hair in frontoparietal region
• Downslanting palpebral fissures
• Apparent hypertelorism
• Prominent jaw
• High, narrow palate
• Facial flushing, frequently of nose but also cheeks and perioral region
• Premature eruption of teeth, dental crowding, hypodontia, deep bite.
• **Sotos syndrome:**
 - Overgrowth with macrocephaly (prenatal onset)
 - Large hands and feet
 - Advanced osseous maturation
 - Variable intellectual disability and behavioral abnormalities
 - Poor coordination, hypotonia, hyperreflexia
 - Skeletal (kyphoscoliosis, pes planus, genu valgus, joint laxity)
 - Other: cryptorchidism, thin, brittle fingernails, cardiac anomalies, renal anomalies, seizures
• This disorder has an autosomal dominant inheritance pattern. The majority of cases are sporadic with *de novo* mutation (>95%).

• Mutation in or deletion of *NSD1* is responsible for most cases.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Test Method</th>
<th>Mutations Detected</th>
<th>Mutation Detection Frequency by Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSD1</td>
<td>Sequence analysis / mutation scanning</td>
<td>Sequence variants</td>
<td>~12% 6</td>
</tr>
<tr>
<td></td>
<td>Deletion/ duplication analysis</td>
<td>5q35 microdeletion encompassing NSD1 and NSD1 partial-gene deletions</td>
<td>~50% 8, 10, 11</td>
</tr>
<tr>
<td></td>
<td>FISH</td>
<td>5q35 microdeletion encompassing NSD1</td>
<td>~50% 6, 10, 12</td>
</tr>
</tbody>
</table>

Japanese	Non-Japanese
27%-93% 7 | ~15% 10, 11 |
~10% 7, 10, 12 | ~10% 7, 10, 12 |
- Long face
- Prominent forehead
- Macrocephaly
- Large ears with soft cartilage
- Prominent jaw (prognathism usually not noted until after puberty)
- Thickening of nasal bridge extending down to the nasal tip
- Pale blue irides
- Epicanthal folds
- High arched palate
- Dental crowding
Fragile X syndrome

- Developmental delay and intellectual disability
- Abnormal craniofacies
- Behavioral abnormalities: hyperactivity, autism
- Macro-orchidism
- Strabismus
- Orthopedic: joint hyperextensibility, pes planus
- Growth: Macrocephaly in early childhood and accelerated linear growth in childhood
- Cardiac: mitral valve prolapse, aortic root dilatation
- Dermatologic: usually soft and smooth skin
• *FMR1* gene CGG trinucleotide repeats:

 – Normal: 5-44 (stable)

 – Intermediate (borderline): 45-54 (14% are unstable and may expand to premutation range when transmitted by the mother)

 – Premutation: 55-200 (not associated with FXS, but unstable and women are at risk of having children with FXS).

 – Full mutation: >200 (ID in all males and 50% of females)
Incontinentia pigmenti

• Affects the skin, hair, teeth, nails, eyes, and central nervous system.

• Characteristic skin lesions evolve through four stages:
Stage I: Blistering (birth to age ~4 months)
Stage II: Wart-like rash (for several months)
Stage III: Swirling macular hyperpigmentation (age ~6 months into adulthood)
Stage IV: Linear hypopigmentation
• Developmental delay
• Seizures
• Microcephaly
• Hypodontia and microdontia
• Sparse hair
• Nail dystrophy
• Retinal lesions
• X-linked dominant or de novo
• Lethal in males
• Genetic test: IKBKG gene
Noonan syndrome

- Neonatal manifestations:
 - Tall forehead with course facial features
 - Ptosis with thick droopy eyelids
 - Hypertelorism and epicathal folds
 - Blue or blue-green iris
 - Low-set posteriorly rotated ears
 - Short neck with excess nuchal skinfolds
• Cardiac manifestations:
 – Hypertrophic cardiomyopathy
 – Pulmonic stenosis
 – Septal defects

• Lymphedema of dorsum of hands and feet
• Hypotonia
• Joint laxity
• Cryptorchidism
• Feeding difficulty
• FTT
Later manifestations:

- Short stature
- Microcephaly
• Autosomal dominant or de novo
• Genetically heterogeneous
• Gene panel
Smith-Lemli-Opitz syndrome

- Cleft palate
- Cardiac defects: atriventricular septal defects, total anomalous pulmonary venous return
- Hypospadias and cryptorchidism
- Post axial polydactyly
- Short thumbs
- Y-shaped second-third toe syndactyly
• Facial features:
 – Microcephaly
 – Ptosis
 – Depressed nasal bridge
 – Short anteverted nose
 – Micrognathia
• Autosomal recessive
• Disorder of cholesterol synthesis.
• Low cholesterol
• DHCR7 gene testing
• **Malformation syndromes**
 – Chromosomal disorders
 • Cytogenic chromosomal disorders
 • Microdeletion/microduplication syndromes
 – Single gene disorders
• **Malformation syndromes**
 – Chromosomal disorders
 • Cytogenetic chromosomal disorders
 • Microdeletion/microduplication syndromes
 – Single gene disorders
 – Teratogens
• **Malformation syndromes**

 – Chromosomal disorders
 • Cytogenic chromosomal disorders
 • Microdeletion/microduplication syndromes

 – Single gene disorders

 – Teratogens: fetal alcohol syndrome, fetal valproate syndrome, retinoic acid embryopathy
Prader-Willi syndrome

• Neonatal manifestations:
 – Hypotonia
 – Feeding difficulties
 – FTT
 – Bitemporal narrowing, almond-shaped eyes, thin upper lips
 – Central sleep apnea
• Later manifestations:
 – Truncal obesity
 – Voracious appetite
 – Learning and behavioral difficulties
 – Small hands and feet
 – Short stature
• Caused by:
 – Paternal deletion of 15q11q13 (75%)
 – Maternal UPD (24%)
 – Imprinting defects

• Methylation test for Prader-Willi/ Angelman syndrome
Beckwith-Wiedemann syndrome

- Manifestations in neonatal period:
 - Macrosomia
 - Macroglossia
 - Abdominal wall defects
 - Hypoglycemia
 - Ear lobe creases and pits of posterior helix
 - Visceromegaly
 - Hemihyperplasia
 - Renal and cardiac defects
• Facial features:
 – Macroglossia
 – Nevus flammeus
 – Infraorbital creases
 – Midface hypoplasia
• Wilms tumors and hepatoblastoma can present in neonatal period
• Caused by epigenetic alterations in 11p15.
• Methylation test for Beckwith-Wiedemann syndrome
References

• GeneReviews: https://www.ncbi.nlm.nih.gov/books/NBK1116/