Case Scenarios in Pediatric Emergency Medicine

Dr Malcolm Borg MD, MRCSEd, MRCP(UK), FRCEM, DCH Consultant and Division Chief, Pediatric Emergency Department Sheikh Khalifa Medical City

Learning Objectives

- Epidemiology of Childhood Poisoning in Abu Dhabi
- Commonest agents ingested
- General Empirical Approach to Poisoning
- Case Scenarios focusing on cases that are representative of common but esoteric ingestions

© Dr Malcolm Borg

2016 Childhood Poisoning Cases
Emirate of Abu Dhabi

Epidemiology in Abu Dhabi

- 1031 children 0-10 years in 2016
- Burden of illness: 0.006% of total Pediatric ED attendances¹
- Al Ain: 413 (0.35 per 1000 children)²
- Abu Dhabi: 544 (0.26 per 1000 children)
- Al Dhafra (Western Region): 74 (0.38 per 1000 children)

Age at presentation

Epidemiology Trend in Abu Dhabi

- In 2010 the incidence of childhood poisoning in Al Ain and Tawam Hospitals was 2.35 per 1000 children³
- Significant reduction in the incidence of poisoning in children
- This was seen in both Emirati and Expat populations

Type of poisoning

- 151 (65%) with poisoning from **medicinal** substance
- 81 (35%) with poisoning from non-medicinal substances
- Medicine ingestions account for the majority of admitted patients 48 (79% of admissions)

Medicinal Poisoning Cases

Medicine	Number	Percentage
Paracetamol	23	9.9
NSAIDs	14	6.0
Multivitamin/Minerals	13	5.6
Antihistamine	12	5.2
Vitamin D	10	4.3
Thyroxine	9	3.9
Montelukast	9	3.9
Cardiovascular Meds	5	2.2 © Dr Malcolm Bor

Results - Non-medicinal Poisoning

- Caustic ingestions are the commonest non-medicinal cause of poisoning accounting for 8.6% of total ingestions
- Also accounts for 70% of the cases admitted with nonmedicinal poisoning
- Corrosive and battery ingestion resulted in all the endoscopies performed

Non-medicinal Poisoning Cases

Chemical	Number	Percentage
Bleach	11	4.7
Detergents	8	3.4
Toilet Bowl Cleaner	5	2.2
Other caustics	4	1.7
Pesticide	6	2.6
Silica Powder	6	2.6
Alcohols	5	2.2
Perfumes/Fresheners	7	3

Case Scenarios

General Approach to Toxic Ingestions Evaluation

- Be meticulous in establishing as many details as possible from as many sources as possible.
- Assume worst case scenario in terms of ingestion
- Anticipate potential complications based upon possible ingested medications
- These may be related to the class of medication but may also be idiosyncratic to the specific medication or to the medication in overdose (Use reference text)

General Approach to Toxic Ingestions Management

- Consider gastric decontamination
- Use antidote if available
- Cornerstone of care is appropriate supportive measures
- Establish safe discharge and follow up criteria at the outset
 - Based upon reference advice (Micromedex, UptoDate, Toxbase, Consultation)
 - Time to peak plasma concentration and elimination half life of the medication

Gastric Decontamination

- GASTRIC LAVAGE NOT ROUTINELY RECOMMENDED
- Evidence would indicate 40-50% of gastric contents remain in the stomach and up to $1/3^{rd}$ are propelled forward^{4,5}
- When compared to activated charcoal alone the vast majority of the evidence shows either no benefit or worse outcomes, mainly due to aspiration^{6,7}
- One study in which GL was only carried out on obtunded patients indicated some benefit with p value <0.05 if administered within 1 hour.⁸
- GL SHOULD ONLY BE CONSIDERED FOR OBTUNDED INTUBATED PATIENTS
 WITHIN 1 HOUR OF INGESTION. (In practice this will mean that in accidental
 poisoning in children it will practically never be used)

- 14 month old child ingested an unknown amount of AC Cleaning Liquid consisting of Sodium Hydroxide.
- Mother noted lip swelling and facial redness. Child brought to ER.
- On examination child had marked lip swelling but was otherwise well looking. Normal vital signs.
- Oropharyngeal examination revealed 1 small ulcer of the tongue but was otherwise unremarkable.
- Labs unremarkable.

Should the child undergo endoscopy, inpatient observation or discharge from ED?

Evidence for the reliability of symptoms and signs as a predictor of esophageal injury is mixed. 9,10,11

Caustic ingestion

Household Products containing alkalis or acids

- Alkalis: bleach (chlorine-based), ammonia or sodium hydroxide
- Acids: toilet cleaners containing HCI, bleach (peroxide-based)

- Ingested substances (Abu Dhabi) in order of frequency¹:
 - Bleach (Clorox)
 - Toilet Bowl Cleaner
 - Drain cleaner/opener

Positive predictive value for severe esophageal lesions according to ingested caustic 10

Positive predictive value for severe esophageal lesions according to symptoms 10 Borg

Caustic ingestion

Child does not usually need an endoscopy if:

- 1. Ingestion was **accidental** OR it is **unclear** if the child actually ingested anything
- 2. The suspected product is of **low causticity** (ex: household bleach)
- 3. Patient is asymptomatic for 2-4 hours of observation
- 4. Examination reveals no signs of oropharyngeal injury

Case Scenario 2

Antihistamines

- 4 year old ingested 20mls of Fenistil
- Mother witnessed the ingestion and brought straight to the ER within 60 mins
- Child symptom free
- Normal physical examination with normal vital signs
- Activated charcoal given immediately

Antihistamine

 Commonest antihistamine medications ingested in Abu Dhabi were (in order of frequency)¹:

- Cetirizine
- Dimethindine (Fenistil)
- Chlorpheniramine
- Diphenhydramine

Antihistamine

- For therapeutic doses:
 - Peak plasma concentration: Range 1 hr (cetirizine) 6 hrs (chlorpheniramine)
 - Half Life: 2-42 hrs
 - Duration of Action: 6-8hrs (chlorpheniramine/diphenhydramine) 24 hrs (cetirizine)

 No studies available studying pharmakokinetics of the medications in overdose

Clinical complications & mechanisms^{12,13,14,15}

- Drowsiness: H1 receptors
- Anticholinergic Toxidrome: Muscarinic Receptors
- Uncommonly for diphenhydramine a serotonin syndrome has been reported (idiosyncratic)
- Idiosyncratic Cardiotoxicity with QT prolongation rarely with cetirizine
- Idiosyncratic Cardiotoxicity (Prolonged QTc/Brugada/VTs)
- Neurotoxicity for diphenhydramine

Anticholinergic Toxidrome Mad as a hatter Altered mental status Blind as a bat Mydriasis Red as a beet Flushed skin Hot as a hare Dry skin (anhydrosis) Dry as a bone Dry mucous membranes

Antihistamine

- Observe 6 hours minimum
- All patients require 12 lead ECG
- Symptomatic patients require basic labs
- Sick patients require supportive measures as necessary
- CPR may need to be prolonged because of some evidence of recovery without neuro sequalae after prolonged CPR

Case Scenario 3

Thyroxine

- 3 year old child
- Accidental ingestion of 3 x 100mcg tablets of her mother's thyroxine 1 hour prior to arrival.
- Thyroxine similar in appearance to homeopathic medication the child was being given on a daily basis
- Child remained completely symptom free
- Physical examination normal
- Activated charcoal given

Main Clinical Questions

Should we do baseline labs?

Should we observe or discharge?

Does she need admission for extended observation?

Acute Thyroxine Overdose

- Evidence consists largely of case reports
- 7 case series
- No dose-response relationship between the occurrence or severity of symptoms and amount levothyroxine ingested.
- 2 case reports of seizures developing after overdoses.
- Overwhelming majority of patients develop no or mild symptoms

Acute Thyroxine Overdose

Fyidence Based Advice¹⁶⁻²¹

- For symptomatic patients symptom onset was between 12 and 48 hours but can be delayed
- Observe for 12-24 hrs
- Solid safety net advice
- Review in clinic after 3-6 days (elimination half lives for T4 approx 3 days and for T3 approx 6 days)
- Follow up to continue for up to 2 weeks

2 year old child brought to ER 30 minutes after ingestion of an unknown quantity of kerosene stored in a mineral water bottle whilst at a barbecue.

Child coughed and vomited at the time.

Symptom free on arrival to ER

Examination including vital signs unremarkable.

Main Clinical Questions

Should gastric decontamination with AC or GL be performed?

Should we do any investigations particularly CXR?

How long should we observe?

Hydrocarbons are categorized into:

- Aromatic: Benzene, Toluene, Xylene used primarily in solvents, glues, nail polishes, paints and paint removers
- Aliphatic: Petroleum distillates like petrol, kerosene and naptha.
- Halogenated: Chloroform, Carbon tetrachloride
- Terpene: Turpentine and Pine oil (camphor)

Main accidental hydrocarbon poisoning seen in children in Abu Dhabi are:

- Accidental ingestion of kerosene or petrol that is stored in a mineral water bottle
- Accidental ingestion/exposure to Naphthalene Moth Balls or Camphor in Moth Balls or Vick's VapoRub

Petrol and Kerosene

- Main complication of Ingestion of petroleum distillates is pulmonary aspiration
- Uncommon occurring in only 1 patient out of 15 identified on our initial review of the data from Abu Dhabi in 2016
- Consistent with the previous studies²⁴
- Systemic symptoms are very uncommon and occur more frequently with inhalation

Hydrocarbon Pulmonary Aspiration

- AC not useful and NOT ADVISABLE GL CONTRAINDICATED.
- Treatment is supportive (avoid racemic epi nebs as sensitized myocardium may be prone to ventricular arrhythmias)
- Symptoms occur within 30 mins for the majority but may be delayed²⁴
- Symptomatic patients should have CXR and admitted
- Asymptomatic children shoulder be observed for 6 hours then have CXR and discharged if normal

Naphtalene and Camphor

- Toxicity has been documented with ingestion as well as topical exposure either directly (Vick's VapoRub) or by wearing clothes stored with the mothballs.²³
- Camphor mainly complicated by CNS toxicity (drowsiness, seizures, delirium). Very rapid onset within 30 mins
- Napthalene: Methemoglobinema as well as intravascular hemolysis which is well documented after exposure to naphthalene in patients with G6PD.

Camphor

- Camphor is HIGHLY TOXIC
- Mainly complicated by CNS toxicity (drowsiness, seizures, delirium). Very rapid onset within 30 mins
- Gastric decontamination may be considered
- ECG and basic labs including LFTs
- Minimum 6 hours observation
- Supportive treatment as necessary

Naphtalene

- Methemoglobinema as well as intravascular hemolysis which is well documented after exposure to naphthalene in patients with G6PD.
- Al patients to have ECG, U&Es, LFTs, hemolysis screen and methemoglobin levels.
- Observation for at least 4 hours
- However in Case Reports the onset of symptoms for Napthalene is usually delayed, case reports present within 24-48 hours.

- Borg M. Accidental Poisoning in Children: The Abu Dhabi Experience so far. 12th SEHA International Pediatric Conference 2018.
- 2. Statistical Yearbook of Abu Dhabi 2017, Statistics Center, Abu Dhabi. Available at https://www.scad.ae/Release%20Documents/SYB 2017 EN.PDF
- 3. Dawson KP; Harron D; McGrath L; Amirlak I; Yassin A; Eastern Mediterranean Health Journal, 1997 Apr; 3(1): 38-42. Available at: http://www.emro.who.int/ar/emhj-volume-3-1997/volume-3-issue-1/article6.html.
- 4. Saetta JP, March S, Gaunt ME, Quinton DN. Gastric emptying procedures in the self-poisoned patient: are we forcing gastric content beyond the pylorus? J R Soc Med. 1991;84(5):274.
- 5. Tandberg D, Diven BG, McLeod JW. Ipecac-induced emesis versus gastric lavage: a controlled study in normal adults. Am J Emerg Med. 1986;4(3):205.
- 6. Merigian KS, Woodard M, Hedges JR, Roberts JR, Stuebing R, Rashkin MC. Prospective evaluation of gastric emptying in the self-poisoned patient. Am J Emerg Med. 1990;8(6):479.
- Buckley NA, Whyte IM, O'Connell DL, Dawson AH. Activated charcoal reduces the need for Nacetylcysteine treatment after acetaminophen (paracetamol) overdose. J Toxicol Clin Toxicol. 1999;37(6):753.

- 8. Management of acutely poisoned patients without gastric emptying. AUKulig K, Bar-Or D, Cantrill SV, Rosen P, Rumack BH SOAnn Emerg Med. 1985;14(6):562.
- 9. Gaudreault P, Parent M, McGuigan MA, Chicoine L, Lovejoy FH Jr. Predictability of esophageal injury from signs and symptoms: a study of caustic ingestion in 378 children. Pediatrics 1983;71(5):767.
- 10. Lamireau T, Rebouissoux L, Denis D, Lancelin F, Vergnes P, Fayon M. Accidental caustic ingestion in children: is endoscopy always mandatory?. J Pediatr Gastroenterol Nutr. 2001;33(1):81.
- 11. Gupta SK, Croffie JM, Fitzgerald JF. Is esophagogastroduodenoscopy necessary in all caustic ingestions?. J Pediatr Gastroenterol Nutr. 2001;32(1):50.
- 12. Hansen JJ, Feilberg, Jorgensen NJ. Accidental cetirizine poisoning in a four- year- old boy. Ugeskr Laeger 1998; 160: 5946-5947.
- 13. Ridout SM, Tariq SM. Cetirizine overdose in a young child. J Allergy Clin Immunol 1997; 99: 860-861.
- 14. Spiller HA, Villalobos D, Benson BE, Krenzelok EP, Anderson AD. Retrospective evaluation of cetirizine (zyrtec) ingestion. J Toxicol Clin Toxicol 2002; 40: 525-256.
- 15. Köppel C, Ibe K, Tenczer J. Clinical symptomatology of diphenhydramine overdose: an evaluation of 136 cases in 1982 to 1985. J Toxicol Clin Toxicol 1987; 25: 53-70.
- 16. Lewander WJ, Lacouture PG, Silva JE, Lovejoy FH. Acute thyroxine ingestion in pediatric patients. Pediatrics. 1989 Aug;84(2):262-5.
- 17. Tunget CL, Clark RF, Turchen SG, Manoguerra AS. Raising the decontamination level for thyroid hormone ingestions. Am J Emerg Med 1995; 13: 9-13.

- 18. Nygaard B, Dalhoff KP, Saedder E, Lydeking L, Jurgens G. Acute levothyroxine overdose-unpredictable clinical outcome and late onset symptoms: A case series. Clinical Toxicology 2013; 51: 284-285.
- 19. Hartman S, Noordam K, Maseland M, Van Setten P. Benign course after acute high dose levothyroxine intoxication in a 3-year-old boy. Clin Pediatr Endocrinol. 2017; 26(3): 171–175.
- 20. Tsutaoka BT, Kim S, Santucci S. Seizure in a child after an acute ingestion of levothyroxine. Pediatr Emerg Care 2005;21: 857–9.
- 21. Kulig K, Golightly LK, Rumack BH. Levothyroxine overdose associated with seizures in a young child. JAMA 1985;254:2109–10.
- 22. 2016 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 34th Annual Report. Available at https://aapcc.s3.amazonaws.com/pdfs/annual reports/2016 AAPCC NPDS Annual Report.p

- 23. Santucci K, Shah B. Association of naphthalene with acute hemolytic anemia. Acad Emerg Med 2000; 7: 42-47.
- 24. Anas N, Namasonthi V, Ginsburg CM. Criteria for hospitalizing children who have ingested products containing hydrocarbons. JAMA. 1981;246(8):840.

